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Deep Learning in Science - NERSC

Opportunities to apply DL 

widely in support of classic 

HPC simulation and 

modelling.
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The Deep Learning Part in Autonomous Driving

● Model training is the most crucial and challenging aspect
● Many tasks to train for in autonomous driving

● Stereo

● Optical flow

● Visual odometry

● Structure-from-motion

● Object detection

● Recognition and tracking

● 3D scene understanding 

● Many NNs to train for each task
● Retraining (or transfer learning) happens when new data is available

● A trained neural network can also be a powerful tool for
● Pattern recognition
● Classification
● Clustering
● Others…
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The Deep Learning Software Landscape

TensorFlow is nearly as popular as all other frameworks combined
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Deep Learning Toolkits

TensorFlow Caffe CNTK MXNet Torch DeepLearning4j Theano PaddlePaddle Caffe2 BigDL
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Scaling Deep Learning - Motivation

● Scaling Deep Learning training is a tool for
● Models that take a very long time to train 

● and have a very large training dataset
● Increasing the frequency at which models can be retrained with new or improved data

● It is critical to be able to update the models (when new data arrives) in a 
matter of minutes

● Hyper-Parameter Optimization
● For problems and datasets where baseline accuracy is not known

● learning rate schedule
● momentum
● batch size

● Evolve topologies if good architecture is unknown (common with novel datasets / 
mappings) 
● Layer types, width, number filters
● Activation functions, drop-out rates
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HPC Attributes

● DL training is a classic high-performance computing 
problem which demands:
● Large compute capacity in terms of FLOPs, memory capacity and 

bandwidth

● A performant interconnect for fast communication of gradients
and model parameters

● Parallel I/O and storage with sufficient bandwidth to keep the 
compute fed at scale
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The Cray PE DL Scalability Plugin Project Overview

● Cray’s primary goals were:
● Design a solution for scaling TensorFlow (specifically synchronous SGD) 

to significantly larger node counts than existing methods allowed
● Should require minimal changes to user training scripts and provide a more 

friendly user experience

● Achieve the best possible TensorFlow performance on Cray Systems

● Maintain accuracy for a given number of steps and hyper-parameter 
setup allowing for significantly reduced time-to-accuracy through scaling

● Ideally have a portable solution that would work with other 
deep learning frameworks
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Data Parallelism - Collective-based Synchronous SGD

● Data parallel training divides a global mini-batch of examples across processes
● Each process computes gradients from their local mini-batch
● Average gradients across processes
● All processes update their local model with averaged gradients 

● all processes have the same model

● Not shown is the I/O activity of reading training samples and possible 
augmentation)

Compute 

intensive

Communication 

intensive

Typically not 

much compute
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Data Parallel Synchronous SGD

● Operations in a “step” of SGD

● Parallel operations highlighted 
with light blue box

● Communication highlighted in 
light red box
● Maps to an allreduce

● Non-parallel work is the remainder

● For a fixed local mini-batch size 
per process, the fraction of time in 
parallel work is constant as more 
processes are added 

Read/prepare local

mini-batch

Compute gradients

Reduce gradients across 

all process (local mini-batches)

Update weights and 

biases with gradients
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Distributed TensorFlow

● TensorFlow has a native method for parallelism across nodes
● ClusterSpec API

● Uses gRPC layer in TensorFlow based on sockets

● Can be difficult to use and optimize

● User must specify
● hostnames and ports for all worker processes

● hostnames and ports for all parameter server processes (see next slide)

● # of workers

● # of parameter server processes

● Chief process of workers
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Distributed TensorFlow

● Parameter device is a separate process possibly requiring additional nodes
● Number of parameter devices processes to use is not clear

● Communication is an allreduce but not implemented that way

● Several gradient “aggregation” methods possible in TensorFlow

● All implement an allreduce as a set of gather/bcast operations with point-to-point over sockets
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Training Script Modifications

● The Cray PE DL Plugin require the following modifications to a 
serial training script

1. Importing the Python module

2. Initialize the module 

● Possibly configure the thread team(s) for specific uses

3. Broadcast initial model parameters

4. Incorporate gradient aggregation between gradient computation and model 

update

5. Finalize the Python module
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Cray PE DL Scalability Plugin Performance
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Horovod / CPE DL Plugin – Throughput Scaling
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Cray PE DL Scalability Plugin

● Users can easily achieve ideal scaling 
performance across DL frameworks 
utilizing stochastic gradient descent

1. Load a module

2. Plug in a few simple lines to your serial 
Python or C-based training script

3. Scale up your training workload to 
hundreds of nodes or more on Cray 
systems

● Delivers high performance across a variety 
of Cray node architectures

● Cray customers can leverage their existing 
compute nodes to scale DL training
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Legal Disclaimer
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Thank You!

Questions?


